Method selection and planning
Cohort 3 Team 7 (Yetti)

Bak, Bartek
Burberry, Katelyn
Collins, Lucy
Ganley, Joe
Keegan, Josh
Kirkham, Katharine
Mayall, Daniel
Sawdon, Theo

Development tools:

The team will be using Intellid IDEs to develop in Java code, this means that the people who
are writing the actual code will be able to collaborate with each other, sharing information
about keybinds, extensions, and other capabilities streamlining the development process,
rather than if each developer was using either other IDEs or just plain text editors. IntelliJ
includes a rudimentary built-in formatter, that will for example indent the code correctly on
save. The team members responsible for code development did not feel like using a
third-party formatter would be useful, and it would just implement mild setup delays.

Code-specific collaboration:

For collaborating with code, the team will be using Git, and GitHub (as the platform to hold
the code, discussions and revision history). The reason we have decided to use Git, is that it
is an industry-standard way to keep track of version control, and see the progression of how
the game code changes with the collaborators. There is an abundance of guides and
documentation online on how to use Git, including all of its commands, etc.

From there, we have decided to (specified in the CONTRIBUTING.md file in the repository)
use pull requests and branches (a mechanism that allows contributors to propose changes
to a project through in their own isolated branches of code, which can then be reviewed and
discussed before being merged into the main codebase) to have a structured workflow that
allows each change to be isolated and examined by every collaborator before being merged
into the main codebase. Each commit also follows conventional commit naming, such as
“feat”, “fix”, “docs”.

There will also be a .gitignore file (a file which excludes certain files from being tracked by
git, and therefore uploaded to the repository) to keep the repository clean and exclude any
build logs, caches, etc that are not needed when someone is browsing the code.

Non-code collaboration:

One collaboration medium that is not for code, we have decided to use Google Docs and
Google Drive. This decision was made with the main reason being familiarity with the tools -
everyone on the team has used these tools before, and each of our university Google
accounts has access to 2TB of storage space, which is plenty for this kind of work. We have
split it into multiple files that we each have access to and can edit, and the main people
working on each deliverable are responsible for working on the documents. Google Drive is
simply used to hold all of these files that we work on.

We will also be using WhatsApp as the primary “informal” communication platform, and once
again, the biggest factor drawing us to choose this platform was everyone’s familiarity with it,
and how standardised across the world it is.

Project planning tools:

For project planning, we have also decided to use Github issues, they are not just for issues,
but can have all forms of discussions. Alternative tools for this include Jira, Trello and Asana,
and we looked at them, and while they had free plans, either nobody or only a few people on
the team ever used them, whereas most are familiar with Github, and keeping things to just
one platform reduces overhead for the development and documentation teams.

https://github.com/yetti-eng/yettigame/blob/main/CONTRIBUTING.md

Level development:

For the map development, to design and plan each of the levels for the game, we use a
software called “Tiled”. It is a free, open source and full-featured level editor, that supports
flexible object layers, is extensible with JavaScript, and is widely supported by many game
development frameworks, such as Unity, Godot, as well as lots of languages like C, C#, Go,
Java (what we are using for the game), Python, Rust, and many others.

We chose to use Tiled since it is more popular that other widely used and free alternatives,
such as LDtx, but that is also a free and open source 2D level editor that is widely used and
supported.

Cl setup:

For continuous integration, we use Github Actions. A big reason for this once again is that it
is integrated into the platform that we are already using for code hosting, issue tracking,
discussions, etc. We have learned in one of the lectures how to set up basic Actions, so we
will use it to run builds, and checks to make sure it compiles and runs on the platforms
outlined in the requirements, get the compiled jar file, upload it as an artifact and create
releases with the Jars attached. Some alternatives we considered to use were GitLab CI/CD
(it is powerful and YAML-based, and great if the repo is on GitLab, but our repo is on Github
and using it adds friction (mirrors/tokens) and an extra ui to manage) and self-hosted
Jenkins (we would have full control but we would have to provision servers, plugins,
backups, etc).

Definitions and change control:

To keep work predictable, an issue is Ready when it satisfies a requirement from the list of
requirements derived from the initial (or subsequent) client meetings. A change is done
when it is approved by the programming team, and Cl is accepting on Linux, macOS and
Windows and a JAR runs locally. If any issues arise, they are opened on GitHub issues to be
addressed.

We implement the desktop game with Java 17, libGDX and Gradle. Java 17 is the mandated
language level and provides a portable, cross-platform runtime. libGDX is a lightweight 2D
engine with a mature LWJGL3 desktop backend, tiled-map support, text rendering and
audio, which helps us target low-spec laptops and meet the client’s cross-platform
requirement. Gradle offers fast builds as well. An alternative to Gradle is Maven, which is a
robust build tool as well.

Team approach to organisation:

We operate without a formal leader. At the start we assigned work based on preference and
skills (e.g., requirements, risk assessment, coding). GitHub is our single source of truth: all
work flows through Issues and PRs with labels and assignees (no templates, no requirement
IDs). The main branch is protected; merges for the game code go via reviewed PRs, while
low-risk repository admin/docs changes (e.g., CONTRIBUTING.md) can go directly to main.
Small decisions are made within the relevant sub-team (e.g., the two programmers) to avoid
blocking others; big decisions (direction, scope, trade-offs) are discussed biweekly in a
whole-team meeting with updates/demos and decided by vote. Day-to-day communication
and quick questions are handled asynchronously on WhatsApp.

This approach fits the team and project: everyone expressed satisfaction with the setup, it
minimises ceremony while enforcing quality with things like branch protection, code review
and visible ownership on Issues/PRs, and it is using tools familiar to everyone (GitHub,
Google Docs/Drive, WhatsApp) to reduce overhead and suit mixed student schedules.
Pairing in fragile areas and occasional role rotation mitigate single-point-of-failure risks
highlighted in our risk assessment. If anyone needs history, we have a version history for
each file through google docs and google drive, and for the code, there is a commit history in
the repository.

Systematic plan:
Milestones and dates (A1 due Mon 10 Nov 2025):

e lteration 1 (1-7 Oct): Risk register baseline; requirements skeleton; website
scaffolded.

Iteration 2 (8—14 Oct): Requirements expanded; architecture baseline.

Iteration 3 (15-21 Oct): Architecture refined; risk register matured.

Iteration 4 (22—-28 Oct): Repo scaffold (Java 17, Gradle, libGDX); Cl setup.

Iteration 5 (29 Oct—4 Nov): Map pipeline (Tiled) and art; event system skeleton.
Iteration 6 (5—10 Nov): Timer/pause/counters; polish, packaging, PDFs and website.

Key tasks with dates, priorities, dependencies:

TOO01 - Risk assessment and mitigation
e Start: 1 Oct « Finish: 28 Oct
e Dependencies: none * Output: Risk1.pdf, risk register (IDs, likelihood/impact,
mitigation)

T002 - Requirements elicitation and specification
e Start: 2 Oct « Finish: 7 Nov
e Dependencies: none ¢ Output: Req1.pdf with UR/FR/NFR IDs and acceptance
criteria

T0O03 - Architecture (structural + behavioural, traceability)
e Start: 9 Oct « Finish: 7 Nov
e Dependencies: T002 (req IDs) ¢ Output: Arch1.pdf with Doc

T004 - Tooling and ClI (Java 17, Gradle, libGDX)
e Start: 22 Oct « Finish: 3 Nov
e Dependencies: none ¢ Output: Initial code in the github repository

T0O05 - Map pipeline and art (Tiled + layers)
e Start: 29 Oct « Finish: 7 Nov
e Dependencies: TO04 (project scaffold) « Output: maze assets and layers

T0OO06 - Event system skeleton (triggers/effects)
e Start: 29 Oct « Finish: 4 Nov
e Dependencies: TO05 (map loader) « Output: Triggering mechanism, effects interface

T0OO7 - Implement required A1 events (1 negative, 1 positive, 1 hidden)
e Start: 30 Oct » Finish: 7 Nov
e Dependencies: TO06 « Output: Three working events, counters incremented

TOO8 - Timer, pause and counters Ul
e Start: 22 Oct * Finish: 5 Nov
e Dependencies: T004 (loop/input), TO06 (event outcomes for counters) » Output:
5-minute timer with pause, counters overlay

TO09 - Packaging
e Start: 1 Nov Finish: 6 Nov
e Dependencies: T004, TO08 » Output: Single executable JAR, validated on
Windows/macOS/Linux

TO10 - Accessibility and attribution
e Start: 1 Nov « Finish: 7 Nov
e Dependencies: T0O05-T008 « Output: Multimodal cues (text + visual/audio),
Assets/ATTRIBUTION.md

TO011 - Website and deliverables
e Start: 1 Oct « Finish: 9 - 10 Nov
e Dependencies: all « Output: Website with links to PDFs, JAR, repo; final PDFs
(Req1.pdf, Arch1.pdf, Plan1.pdf, Risk1.pdf, Impl1.pdf)

Dependencies summary:

T003 depends on T002 (traceability from requirements).

TO06 depends on TO0S (map loader and layers).

T0O07 depends on T006 (event framework).

T008 depends on T004 (input/game loop) and TO06 (event outcomes).
TO09 depends on T004 and TOO08 (build + artifact).

T011 depends on all prior tasks.

How the plan evolved:

Our initial plan front-loaded discovery and documentation in the first two weeks, so things
such as risk register, meeting with the client to create the requirements skeleton, a website
scaffold. As requirements solidified, we produced a baseline architecture (structural first,
then behavioural), and scheduled weekly snapshots to capture changes.

After scaffolding the libGDX project (Java 17 with Gradle), we learned that integrating Tiled
maps and event triggers would take longer than estimated because map loading and
collision layers needed more iteration. We pulled timer/input work forward and pushed the
event-system skeleton back by one week. This change was recorded as a plan update in the
next snapshot.

The requirements grew to include main menu and settings - we retained these in the spec
for completeness but re-classified them as should/could for A1. We also tightened the
wording of hidden events and added acceptance criteria, which improved testability and
reduced work later.

Accessibility and licensing choices also evolved. We initially considered richer audio
narration, but shifted to simpler multimodal cues (clear text plus parallel visual/audio signals)
to avoid asset/licensing risk and fit the timebox

Resourcing adjustments were needed when availability fluctuated. We concentrated map
work with one owner and split scoring/events, while pairing on fragile areas (input handling,
collisions) and small refactors (e.g., extracting InputHelper) were scheduled inside tasks to
reduce future integration risk without creating separate milestones.

Overall, the plan stayed within the original milestones with two notable adjustments: the
event-system skeleton slipped by a few days and was recovered by trimming non-essential
polish. Weekly progress on the website should reflect these changes with brief rationales.

