
Architecture

Cohort 3 Team 7 (Yetti)

Bak, Bartek
Burberry, Katelyn

Collins, Lucy
Ganley, Joe

Keegan, Josh
Kirkham, Katharine

Mayall, Daniel
Sawdon, Theo

Class diagram

Fig 3a: the final class diagram

The above class diagram is a structural representation of the architecture of the game
design. This was chosen as the game is coded using an object-oriented paradigm. A class
diagram allows the relationships between the classes to be shown in a clear, brief overview
of the implementation. This is a very abstract diagram, ignoring many details of
implementation, allowing the main aspects of the architecture to be presented and
understood with clarity.
Note: class diagrams were created in UML with PlantUML.

Fig 3a shows the main classes implemented. The Game class is used as a main class to
bring all the different components together. It contains an array of integers to represent the
maze, with different numbers representing different types of tiles. To fulfil
FR_MAP_CREATION, the array will already be filled to represent a pre-set maze, and will
remain the same throughout the whole game.

In Fig 3a there is a link between the Game and Timer class. The Timer class keeps track of
the time since the user started the game and is needed to make sure the user reaches the
end of the maze within 5 minutes, else the user loses (in order to satisfy UR_TIME). Also,
the time remaining can be displayed, fulfilling part of UR_UI. The Game class uses the
Timer class, as the score variable is impacted by the Timer, necessary for FR_SCORING.
The Timer class also includes the methods pause() and play(), which are needed to
implement the functionality as given by FR_PAUSING and UR_PAUSE.

The Screen class brings together all the visual components of the game; this was necessary
as requirements UR_UI and FR_GAME_CAMERA state the importance of user interface,
and the Screen class makes it easier to maintain a consistent art style (which links to
FR_MAP_STYLE). Furthermore, the Screen class uses a variety of sprites from the Sprite
class, including the player and the dean. The Sprite class contains information from the
library, as well as variables to store the location and the sprite speed. It also contains
methods which take the user’s inputs, stores this information, and then affects the output. In
Fig 3a, it only includes methods to move the player, however more methods can be added
for further functionality.

The Sprite class takes information from the Dean and Player classes. In Fig 3a, there is
little information provided in these classes, however it felt necessary to show these classes
as there is high potential to add more functionality to them later on. One thing to note is that
the Player class contains a list of objects from the Item class. An object from Item has a
method to determine whether it has been used or not. An Item can be used for different
events, and the Player class has an inventory to store these items. This idea was chosen to
make the game more engaging during the events.

The Event class is used by the Game class when the player lands on a special tile in the
maze. Events are necessary in the game in order to accomplish UR_EVENTS. The Event
class contains 2 methods, scoreIncrement() and scoreDecrement(), which are used as score
modifiers, to satisfy FR_SCORING alongside the timer. In addition, Event class uses the
Item class, so that certain items can be used to influence events.

Process of designing class architecture
Link to previous class diagrams: Yetti - Architecture

To initially come up with ideas on the architecture, we focused on what classes would be
needed. Many of the classes remained in the final version of the class diagram, however we
decided to remove some to make the overall structure simpler. For example, we had a Maze
and Tile class which were removed, as we thought it may be best to store the maze array in
the Game class. After having thought about how the array would work, we realised that
integers could be used to represent the different tiles, and the graphics of the tiles could be
represented by the Sprite class. Thus, the Tile class felt redundant.

We considered the Sprite class and thought instead of having all the different assets (such
as the Dean and Player) containing their own methods affecting the visual sprite, it would be
best to put all that information in the Sprite class.
Another idea we had initially was having Event as an abstract class, and creating three
classes for positive, negative and hidden events which inherited from Event. However, upon
reflection, we realised that there wouldn’t be much difference between the PositiveEvent,
NegativeEvent and HiddenEvent classes, therefore we removed these classes, and made
Event a regular class, and included a method to increase the score, and another to
decrease the score.

https://www-users.york.ac.uk/~ctw528/architecture.html

State diagrams

Given the event driven nature of our class architecture a state diagram of the game was
created to reflect this. This was done as the overall game is determined by discrete events
that trigger state transitions, as opposed to executing in a linear fashion. Meaning this
system aligns more so with event driven systems as opposed to other types or architecture.
These diagrams were created to show the behaviour of the game itself and to show how the
different classes interact with one another such as the player dean and score substates.
This representation makes it clear how the classes operate independently while still
contributing to the overall system behaviour, the diagrams are not just a visual depiction of
the game logic but also work as an architectural model that shows how the event driven
system supports modularity and responsiveness.

Each substate within the overall Playing state acts as both an event producer and an event
user. This can be seen in the player substate with the transitions between Idle, Moving and
Colliding are all events that are triggered by discrete events such as
movementKeyPressed(), movementKeyReleased() and collisionDetected(). These
events determine the players behaviour and influence other parts of the system. The player
state also encompasses the items used within the game which are one of the ways to
manipulate the Score.

The Enemy/Dean shows the behaviour and the events
caused by the main enemy of the game which begins to
follow the Player after an event occurs. This substate
responds to startEvent() and reachGoal() triggers moving
through idle,moving and Complete states triggering a
gameOver() when complete

The timer substate reacts to pauseGame, resumeGame and the timer reaching 0
transitioning between Running, Paused and Expired when the player interacts with the
pause menu buttons this substate satisfies the FR_PAUSEING and the UR_PAUSE
requirements which is also shown in the larger state diagram as its own substate as well as
satisfying NFR_GAME_TIME which ensures the game must last only five minutes with the
expired state.

The Score substate updates its internal state in response to events such as timerTick() or
the triggering of positive and negative events. This is one of the few states that is not self
contained as it relies primarily on inputs from the Timer and the Player. The Timer affects
score every tick making a constant change every second/tick whereas the inputs from Player
require interactions with the environment this connected design highlights the nature of the
event driven architecture allowing these subsystems to work together to create the score
subsystem.

These subsystems all produce events that are used
by the parent playing state in order to trigger higher
level transitions such as playing, paused/playing,
gameOver, which shows event propagation across
multiple levels.

This state diagram shows the architecture supports a modular design making it easier to
improve, change or rearrange certain aspects of the game as each substate handles its own
logic separately while still being able to affect and be affected by other substates within the
system. With the overall diagram you can see that the states meet the FR_WIN_SCREEN
and FR_LOSS_SCREEN requirements which are triggered by the game over substrate
outside the current playing states.

